ECON 4151 Lab Session 7: Heckit model

Wonjin Lee

Washington University in St.Louis

November 20, 2020

Outline

1. Heckit model (Wooldridge Ch. 17)

Selectivity: Heckit model

- A common form of sample selection is incidental truncation.
 - We always observe the explanatory variables x; but we only observe y for a subset of the population.
 - The rule determining whether we observe y does not depend directly on the outcome of y; it depends on another variable (an exogenous variable) ⇒ exogenous sample selection.
- Ex. the wage offer, or the hourly wage
 - If the person is actually working at the time of the survey, then we observe the wage offer b/c we assume it is the observed wage.
 - But for the people out of the workforce, we cannot observe the wage offer.
 - The truncation of wage offer is incidental b/c it depends on another variable, labor force participation.
 - Note that we observe all other information about an individual, such as education, prior experience, gender, marital status, and so on.

Selectivity: Heckit model

- Heckit model:

$$y_i = x_i' eta + u_i, \quad \mathbb{E}[u|x] = 0$$

 $s_i = \mathbbm{1}(z_i' \gamma + \nu_i \ge 0)$: selection eq'n

where s = 1 if we observe y, and s = 0 otherwise.

- x and z are always observed and $x \subset z$
- ν is an unobserved error and has a standard normal distribution.
- Assume (u, v) is independent of z.

Assume

$$\left(\begin{array}{c} u\\ \nu\end{array}\right) \sim \mathcal{N}\left[\left(\begin{array}{c} 0\\ 0\end{array}\right), \left(\begin{array}{c} \sigma^2 & \rho\sigma\\ \rho\sigma & 1\end{array}\right)\right]$$

- $Corr(u, v) \implies$ a sample selection problem.

Selectivity: Heckit model

- Assuming u and v are jointly normal (with zero mean), we get

$$\mathbb{E}[y|z, s = 1] = x'\beta + \rho\lambda(z'\gamma)$$

where ρ is the correlation coefficient b/w u and v.

- We have two regressors: x and λ .
- The expected value of y given z and observability of y is equal to $x'\beta$ plus an additional term that depends on the inverse mills ratio evaluated at $z'\gamma$.
- If $\rho = 0$, OLS of y on x using the selected sample consistently estimates β .
- Take the expected value of the selection equation, then

$$\Pr(s = 1|z) = \Phi(z'\gamma)$$

- Estimate γ by probit model of s_i on z_i using the entire sample.

Sample selection correction

- Steps:
 - 1. Use all the observations. Estimate a probit model of s_i on z_i and get $\hat{\gamma}$. Compute the inverse Mills ratio, $\hat{\lambda}_i = \lambda(z'_i \hat{\gamma})$.
 - 2. Use the selected sample (observations for which $s_i = 1$). Run the regression of y_i on x_i and $\hat{\lambda}_i$.