ECON 4151 Lab Session 3: Simultaneous Equations Models and Logit Model

Wonjin Lee

St.Louis Washington University in St.Louis

October 9, 2020

Outline

1. Review of Simultaneous Equations Models (Wooldridge Ch. 16)

Why regressors and error term are correlated?

- 1. Measurement errors in the regressor(s)
- 2. Omitted variable bias
- 3. Simultaneous equation bias
- 4. Dynamic regression model with serial correlation in the error term

Simultaneity bias in OLS

- Two-equation structural model:

$$y_1 = \alpha_1 y_2 + u_1$$

 $y_2 = \alpha_2 y_1 + \beta_2 z_2 + u_2$

where z_2 is exogenous and u_1 and u_2 are uncorrelated.

- Focus on estimating the first equation.
- We can show that by plugging the RHS of the first eq'n in for y_1 in the second eq'n,

$$\mathsf{Cov}\left(y_{2}, u_{1}\right) = \frac{\alpha_{2}}{1 - \alpha_{2}\alpha_{1}} \mathsf{Var}\left(u_{1}\right)$$

- Just like OVB, the asymptotic bias (or inconsistency) in the OLS estimator of α_1 has the same sign as $\alpha_2/(1 \alpha_2\alpha_1)$.
- Why? See the next slide.

Simultaneity bias in OLS

- Let α₁ is the true parameter and a₁ is a naive OLS estimate w/o considering the SEM structure.
- Just like we did in OVB,

$$a_{1} = \frac{\operatorname{Cov}(y_{2}, y_{1})}{\operatorname{Var}(y_{2})}$$
$$= \frac{\operatorname{Cov}(y_{2}, \alpha_{1}y_{2} + u_{1})}{\operatorname{Var}(y_{2})}$$
$$= \alpha_{1} + \frac{\operatorname{Cov}(y_{2}, u_{1})}{\operatorname{Var}(y_{2})}$$
$$= \alpha_{1} + \frac{\alpha_{2}}{1 - \alpha_{2}\alpha_{1}} \underbrace{\frac{\operatorname{Var}(u_{1})}{\operatorname{Var}(y_{2})}}_{>0}$$

Simultaneity bias in OLS

- Simultaneity \implies explanatory variables are endogenous \implies OLS estimators are biased and inconsistent.
- This arises when one or more of the explanatory variables is jointly determined with the dependent variable, typically through an equilibrium mechanism.
- IV can fix it!

Identifying and estimating a structural equation

- A two-equation SEM in eq'm form $(q_s = q_d = q \text{ imposed})$:

 $q = \alpha_1 p + \beta_1 z_1 + u_1$: supply equation $q = \alpha_2 p + u_2$: demand equation

where z_1 is exogenous and u_1 and u_2 are uncorrelated.

- z_1 is an IV for the price in the demand equation.
 - Why? *z*₁ is an exogenous shock to price in the demand equation (it is a supply shifter).
- The demand equation is identified, but the supply equation is not.

Stata excercise

- Wooldridge Ch. 16, C3: Inflation and openness

$$inf = \beta_{10} + \alpha_1 open + \beta_{11} \log(pcinc) + u_1$$
$$open = \beta_{20} + \alpha_2 inf + \beta_{21} \log(pcinc) + \beta_{22} \log(land) + u_2$$

- Wooldridge Ch. 16, C6: Demand function for airline seats on routes in the U.S.

 $\log(passen) = \beta_{10} + \alpha_1 \log(fare) + \beta_{11} \log(dist) + \beta_{12} [\log(dist)]^2 + u_1$