ECON 4151 Lab Session 2: IV

Wonjin Lee

Washington University in St.Louis

October 9, 2020

1. Review of IV (Wooldridge's Introductory Ecconometrics)

2. Exercise (Gujarati's Econometrics by Example)

Why regressors and error term are correlated?

- 1. Measurement errors in the regressor(s) \leftarrow IV can fix!
- 2. Omitted variable bias \leftarrow IV can fix (modern application)!
- 3. Simultaneous equation bias \leftarrow IV can fix!
- 4. Dynamic regression model with serial correlation in the error term

Intro to IV

- Structural equation:

$$y_i = \alpha + \rho s_i + X'_i \beta + \underbrace{A'_i \gamma + \eta_i}_{\equiv \epsilon_i}$$

- ho has a causal interpretation.
- A are unobserved variables \implies a biased estimate of ρ .
- Need to find at least one instrument z with special characteristics.
 - 1. Relevance requirement: $Cov(z, s) \neq 0$
 - We can test it! Just run a regression and do a t test!
 - 2. Exclusion restriction: $Cov(z, \epsilon) = 0$
 - We can not test it ... Then what should we do?

How IV works?

- We want to run the following regression:

$$y_i = \alpha + \rho s_i + \underbrace{A'_i \gamma + \eta_i}_{\equiv \epsilon_i}$$

- First-Stage:

$$s_i = \delta_0 + \delta_1 z_i + \nu_i$$

- Reduced Form:

$$y_i = \alpha + \rho \left(\delta_0 + \delta_1 z_i + \nu_i \right) + A'_i \gamma + \eta_i$$

= $\alpha + \rho \delta_0 + \rho \delta_1 z_i + \rho \nu_i + A'_i \gamma + \eta_i$

How IV works?

- The IV estimator in the bivariate context:

$$\hat{\rho}_{IV} = \frac{\operatorname{Cov}(z, y)}{\operatorname{Cov}(z, s)} = \frac{\operatorname{Cov}(z, y) / \operatorname{Var}(z)}{\operatorname{Cov}(z, s) / \operatorname{Var}(z)} = \rho$$

- Why?
 - Numerator:

$$\frac{\operatorname{Cov}(z_i, y)}{\operatorname{Var}(z)} = \frac{\operatorname{Cov}(z, \alpha + \rho\delta_0 + \rho\delta_1 z_i + \rho\nu_i + \epsilon_i)}{\operatorname{Var}(z)}$$
$$= \frac{0 + 0 + \rho\delta_1 \operatorname{Var}(z) + 0 + 0}{\operatorname{Var}(z)}$$
$$= \rho\delta_1$$

- Denominator:

$$\frac{\mathsf{Cov}(z,s)}{\mathsf{Var}(z)} = \delta_1$$

One comment on IV

- You might want to do the followings:
 - 1. You might want to simply run the first-stage and reduced form separately, and do the division manually.
 - 2. You also might want to run the first-stage, predict \hat{s} , and run the structural regression with s replaced by \hat{s} .
- The coefficient estimates will be correct, but the standard errors will not.
- A better way is to let Stata do it for you.

One more comment on IV

- In small, or finite, samples, IV estimators are biased and their variances are less efficient than the OLS estimators.
- We want Corr(z, s) to be high! (Relevance requirement)
 - Corr(z, s) is high (low) \implies IVs are strong (weak).
- Why? If the instruments are weak, IV estimators may not be normally distributed even in large samples.

One comment on $Var(\hat{\rho}_{IV})$

- Since $R_{s,z}^2 < 1$, ${
 m Var}(\hat{
 ho}_{IV}) > {
 m Var}(\hat{
 ho}_{OLS})$ (when OLS is valid)
 - $R_{s,z}^2$: the strength of the linear relationship b/w s and z (Relevance requirement)
 - $R_{s,z}^2 \uparrow \Longrightarrow \operatorname{Var}(\hat{\rho}_{IV}) \downarrow$
- Why?
 - The IV estimator in the bivariate context (p. 495):

$$\mathsf{Var}(\hat{\rho}_{IV}) = \frac{\sigma_{\epsilon}^2}{n\sigma_{s}^2 \rho_{s,z}^2} \implies \frac{\hat{\sigma}_{\epsilon}^2}{SST_s R_{s,z}^2}$$

- The OLS estimator in the bivariate context (p. 51):

$$Var(\hat{\rho}_{OLS}) = \frac{\sigma_{\epsilon}^2}{SST_s}$$

-
$$\sigma_{\epsilon}^2 = \mathsf{Var}(\epsilon)$$
, $\sigma_s^2 = \mathsf{Var}(s)$, and $\rho_{s,z}^2 = (\mathsf{Corr}(s,z))^2$

Heterogeneous Treatment Effects - LATE

- Treatment effects are not likely to equal across the entire population.
- In general, we cannot find the ATE or even the TOT using an IV strategy.
- IV only identifies the LATE.
- For convenience, assume that z_i is a dummy instrument and s_i is a dummy treatment.
- Compliance Sub-Populations: Four different types of individuals based on their treatment status in response to different values of the instrument.

$$\begin{tabular}{ccc} $s_{0i} = 0$ & $s_{0i} = 1$ \\ \hline $s_{1i} = 0$ & never-taker & defier \\ $s_{1i} = 1$ & complier & always-taker \\ \hline \end{tabular}$$

$\mathsf{LATE} \neq \mathsf{TOT}$

- Local average treatment effect (LATE):

$$\rho = \frac{\rho \delta_1}{\delta_1} = \frac{\mathbb{E}\left[y_i | z_i = 1\right] - \mathbb{E}\left[y_i | z_i = 0\right]}{\mathbb{E}\left[s_i | z_i = 1\right] - \mathbb{E}\left[s_i | z_i = 0\right]} = \mathbb{E}\left[y_{1i} - y_{0i} | c_i = 1\right]$$

where c_i is a dummy indicating whether *i* is a complier.

- When we have heterogeneous treatment effects, we can only hope to identify a treatment effect for the sub-population whose treatment status is determined by the instrument.
- The IV estimate is about compliers (the relevance requirement).
- Monotonicity.

Hausman test

- How to test for endogeneity?
- Steps:
 - 1. From the First-Stage, get \hat{v}_i :

$$s_i = \delta_0 + \delta_1 z_i + \nu_i$$

- Note that in the structural equation, $\delta_1 z_i$ is the exogenous part of s_i and v_i is the endogenous part of s_i .
- 2. Estimate the structural equation with \hat{v}_i :

$$y_i = \alpha + \rho s_i + \pi \hat{v}_i + \epsilon_i$$

- 3. Test H_0 : $\pi = 0$ using a *t* statistic.
 - H_0 means s is not endogenous.

Identification

- # of instruments = # endogenous regressors:
 - The regression coefficients are exactly identified.
 - We can obtain unique estimates of them.
- # of instruments > # endogenous regressors:
 - The regression coefficients are overidentified.
 - We may obtain more than one estimate of one or more of the regressors.
- # of instruments < # endogenous regressors:
 - The regression coefficients are underidentified.
 - We cannot obtain unique values of the regression coefficients.

Overidentification test

- Now we have two IVs for s: z and w.
- We want to test the exclusion restriction; are *z* and *w* uncorrelated with the structural error?
- Steps:
 - 1. Estimate the structural equation by 2SLS and obtain the 2SLS residuals, \hat{c} .
 - 2. Regress \hat{c} on all exogenous variables (including IVs) and obtain R^2 .
 - 3. Test H_0 that z and w uncorrelated with the structural error.
 - Under H_0 , $nR^2 \sim \chi^2_q$ where q is the # of surplus instruments.

Example

- Run the following regressions:

$$In \ Earn_i = B_1 + B_2 s_i + B_3 Wexp_i + B_4 Gender_i + B_5 Ethblack_i + B_6 Ethhisp_i + u_i$$

- 3 instruments: mother's schooling, father's schooling, and number of siblings.